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Ruthenium-catalyzed cyclization of 3-en-1-ynyl imines
with nucleophiles via tandem 5-exo-dig cyclization

and nucleophilic addition
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Abstract—Treatment of 3-en-1-ynyl imines with TpRuPPh3(CH3CN)2PF6 catalyst (1mol%) in DCE (50 �C, 6h) effected catalytic
cyclization with suitable nucleophiles and gave functionalized pyrroles in good yields. The reaction mechanism is proposed to pro-
ceed via (2-pyrrolyl)carbenoid intermediates derived from 5-exo-dig cyclization. This catalytic reaction works well with various
nucleophiles, including water, alcohols and anilines.
� 2004 Elsevier Ltd. All rights reserved.
The activation of an alkyne functionality with transi-
tion-metal species is an efficient method for the in situ
generation of metal-carbenoid species, which subse-
quently leads to interesting products via carbene trans-
fer reactions.1–4 This approach avoids the use of
hazardous diazoalkane as a carbenoid precursor.5

Metal-carbenoid species have been postulated to be inter-
mediates in the cycloisomerization of a,x-enynes using
electrophilic metal catalysts.1,2 Recently, Uemura and
Iwasawa reported metal-catalyzed 5-exo-dig cyclization
of 3-en-1-ynyl ketones and imines to generate carbenoid
intermediates (II) as depicted in Scheme 1 (Eq. 1).3 This
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Scheme 1.
active species reacts with olefin to give cyclopropane
derivatives catalytically.3 (2-Furyl)carbenoids (II) of a
special type undergo Doyle–Kirmse reaction6 with inser-
tion into the C–S bond of allylic sulfides by the carb-
enoid carbon.3a One useful application of this catalytic
protocol is to decompose carbenoid intermediates (II)
with nucleophiles7, but such a process has not yet been
achieved. We envision that carbenium species (III)
derived from a cationic metal catalyst will be prone to
nucleophilic addition to give distinct addition products
(Eq. 2). In this study, we report a new cyclization of
3-en-1-ynyl imines with suitable nucleophiles using
cationic ruthenium species. The proposed ruthenium-
carbenoid intermediate (III) readily reacts with water,
alcohol and amines to liberate useful pyrrolyl deriva-
tives. This catalytic reaction is challenging in synthetic
chemistry because terminal alkynes are easily hydro-
lyzed by electrophilic metal catalysts to give correspon-
ding methyl ketones.8

Table 1 shows the results of these catalytic reactions
over various cationic catalysts and solvents. Treat-
ment of 3-en-1-ynyl imine (1) with 5mol%
TpRuPPh3(CH3CN)2PF6 [A, Tp = tris(1-pyrazolyl)bor-
ate]9,10 and water (1.5equiv) in hot toluene (100 �C,
12h) afforded 2-hydroxymethylpyrrole (2) in 47% yield
in addition to an unknown species 3 (26%). The NMR
spectra and mass data suggested species 3 is derived
from an unknown cyclodimerization of starting imine
1, but the structure can not be assigned with certainty.
The yield of byproduct 3 can be effectively reduced with
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Table 2. Catalytic cyclizations of 3-en-l-ynyl imines with water

N
Ar

R

1 mol% [Ru]

H2O
N Ar

OH
R

4-14 15-25

Iminesa Pyrrolesb

(1) Ar = C6H5 R = Me (4) 15 (78%)

(2) Ar = p-MeC6H4 R = Me (5) 16 (83%)

(3) Ar = C6H5 R = nPr (6) 17 (80%)

(4) Ar = p-MeC6H4 R = nPr (7) 18 (83%)

(5) Ar = p-MeOC6H4 R = nPr (8) 19 (84%)

(6) Ar = C6H5 R = nBu (9) 20 (85%)

(7) Ar = p-MeC6H4 R = nBu (10) 21 (86%)

(8) Ar = p-MeOC6H4 R = nBu (11) 22 (84%)

(9) Ar = C6H5 R = nC6H13 (12) 23 (82%)

(10) Ar = p-MeC6H4 R = nC6H13 (13) 24 (84%)

(11) Ar = p-MeC6H4 R = nC6H13 (14) 25 (87%)

aWater (1.2equiv), [imine] = 1.5M 1mol% catalyst A, DCE, 50�C, 6h.
b Yields were reported after elution through a silica column.

Table 3. Cyclization of 3-en-l-ynyl imines with alcohols and amines

N

R

OMe

[Ru] N

Nu
R

OMe
+ Nu-H

Imines Nu–H Pyrrolesa

(1) R = Me (1) MeOH 26 (86%)

(2) R = Me (1) iBuOH 27 (82%)

(3) R = Me (1) CH2@CHCH2OH 28 (86%)

(4) R = Me (1) iPrOH 29 (78%)

(5) R = Me (1) tBuOH 30 (63%)

(6) R = Me (1) PhNH2 31 (68%)

(7) R = Me (1) PhMeNH 32 (74%)

(8) R = nC6H13 (12) MeOH 33 (89%)

(9) R = nC6H13 (12) PhMeNH 34 (81%)

[Ru] = 1mol% catalyst A, [imine] = 1.50M, NuH (1.2equiv), DCE,

50 �C, 6h.
a Yields were reported after purification from a silica column.

Table 1. Catalytic cyclization of 3-en-l-ynyl imine 1 with water

N

OMe

N

OH

OMe
+ H2O

catalyst

1 2

Entries Catalystsa Solventsb Conditions Yieldsc (%)

1 A (5.0mol%) Toluene 100�C (12h) 47 (26)d

2 A (5.0mol%) Benzene 80�C (48h) 7

3 A (5.0mol%) DME 80�C (48h) N.R.

4 A (5.0mol%) CH3CN 80�C (48h) N.R.

5 A (5.0mol%) DCE 50�C (4h) 58 (23)d

6 A (1.0mol%) DCE 50�C (4h) 80

7 B (5.0mol%) DCE 50�C (4h) 41

8 C (5.0mol%) DCE 50�C (4h) 40

9 D (5.0mol%) DCE 50�C (4h) 46

10 E (5.0mol%) DCE 50�C (4h) 32

a Catalysts: TpRuPPh3(CH3CN)2PF6 (A), CpRuPPh3(CH3CN)2PF6

(B), CpRuPnBu3(CH3CN)2PF6 (C), CpRuP0Bu3(CH3CN)2PF6 (D),

CpRuPCy3(CH3CN)2PF6 (E).
b [1] = 1.5M, 1.2equiv H2O.
c Yields were reported after separation from a silica column.
d The values in parentheses represents the yields of unknown 3.
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low loading of catalyst (vide ante). Benzene, dimethoxy-
ethane (DME) and acetonitrile were far less active
in this catalytic cyclization (entries 2–4), whereas
1,2-dichloroethane (DCE) gave the desired alcohol 2 in
an improved yield (58%) even at 50 �C (entry 5).
Notably, a low loading of catalyst A (1.0mol%) was
more effective, and gave alcohol 2 with in a yield up to
80%. Entries 7–10 show catalytic reactions over vari-
ous cationic ruthenium complexes including CpRu-
PPh3(CH3CN)2PF6 (B), CpRuPnBu3(CH3CN)2PF6 (C),
CpRuPtBu3(CH3CN)2PF6 (D) and CpRuPCy3(CH3-
CN)2PF6 (E), and no catalytic activities were observed
with these catalysts.

The cyclization of 3-en-1-ynyl imine 1 with water is syn-
thetically interesting because many metal complexes cata-
lyze the hydration of terminal alkyne to give methyl
ketone derivatives.8 Surprisingly, such a reaction does
not occur in the present catalytic system. We prepared
various 3-en-1-ynyl imines 4–14 to examine the general-
ity of this cyclization with water; 1.0mol% catalyst A
promoted the reaction in hot DCE (50 �C, 6h) without
the formation of other byproducts. The yields of pyrrol-
yl alcohols 15–25 are given after isolation from a silica
column. Entries 1–2 show the application of this process
to 3-en-1-ynyl imines 4–5 bearing a tolyl and p-methoxy-
phenyl groups respectively, to give the desired alcohols
15–16 in 78–83% yields. This method is compatible with
changes in both the R and Ar substituents (R = nPr,
nBu, nC6H13; Ar = C6H5, p-MeC6H4, entries 3–14) of
the starting imines 6–14, and gives the corresponding
alcohols 17–25 in yields exceeding 80%.

We next examined this catalytic cyclization with other
nucleophiles to enhance its synthetic utility; and the re-
sults are depicted in Table 2. Cyclization of imine 1 with
various alcohols ROH (R = Me, iBu, CH2 = CHCH2,
iPr, tBu, entries 1–5) proceeded smoothly and gave func-
tionalized pyrrolyl 26–30 products in reasonable yields
(63–86%). This process was successfully extended to ani-
line and methylaniline to give products 31–32 in 68%–
74% yields (entries 6 and 7). 3-En-1-ynyl imine 12
showed similar catalytic activity towards methanol and
methylaniline, and gave the products 33–34 in 81–89%
yield. Cyclization of imine 1 with phenol, diethyl- or
diisopropyl amines gave a complicated mixture of prod-
ucts. This observation suggests that nucleophiles with
acidic or basic nature are not compatible with this cycli-
zation. Terminal alkynes tended to react with ruthenium
(II) species to give alkynyl metal species in the presence
of basic amines11 (Table 3).

We have attempted similar catalytic cyclizations on 3-
en-1-ynyl ketones and aldehydes with water, isobutanol
and aniline, but we failed to obtain the expected furan
products. This cyclization is not applicable to those 3-
en-1-ynyl imines bearing an internal alkyne although it
is compatible with p-alkyne reaction intermediates.
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In summary, we have reported a new cyclization of 3-en-
1-ynyl imines with suitable nucleophiles, including
water, alcohols and aniline, to afford functionalized
pyrroles in good yields. In the case of water, we did
not observe the hydration of 3-en-1-ynyl imines like
other catalytic systems. A low loading (1mol%) of
TpRuPPh3(CH3CN)2PF6 catalyst (A) promotes the
catalytic cyclization without the formation of byprod-
ucts. This process is thought to involve (2-pyrrolyl)carb-
enoids derived from 5-exo-dig cyclization of the starting
imines.
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